Wychodzi mi tak, ale nie do x tylko do x+Pi/4
Imho, to absolutnie nie szkodzi:
sin(pi/4+x)=(sqrt(2)/2)–1≈0,2929
pi/4+x=arcsin(–0,2929)= –0,2973
x= –1,0827
sin(x)= –0,8832
cos(x)=0,4689
Bombowe rozwiązanie. Super. Jestem pod wrażeniem. Chapeau bas.
Co do mnie, to poszedłem trochę innym tropem, bardziej "algebraicznym" niż "trygonometrycznym":
No, y
2 to pierwiastek niejako "urojony", bo iloczyn sin(x)*cos(x) z definicji jest mniejszy od jedynki (a tak na czuja: mniejszy od 1/2, tzn. znajduje się w przedziale [–1/2, 1/2]).
Zatem:
Hm. Zarówno sinus, jak i cosinus są dodatnie. Podczas gdy iloczyn sin(x)*cos(x) ma wartość ujemną, bo 1–sqrt(2). Prawdopodobnie to skutek podniesienia do kwadratu wielkości ujemnej po prawej stronie równania. I właśnie tu tkwi "nieelegancja", o której wspominałem...
Sinus i cosinus mają być parą liczb o przeciwnych znakach, z czego wynika, że argument x znajduje się w drugiej, względnie w czwartej ćwiartce układu współrzędnych kartezjańskich, t.j. w przedziale [pi/2; pi] i/lub [3/2 pi; 2pi]. Innymi słowy, obliczyliśmy wartości z dokładnością do znaku.
A więc niejako "w trybie ręcznym" przeniesiemy x odpowiednio do drugiej i czwartej ćwiartki:
Wynik:
x = pi – 0,4879 = 2,6537 (oczywiście plus n razy 2pi, n=1, 2, 3, ...),
sinx = 0,4688
cosx = –0,8833Albo też:
x = 2pi – 1,0829 = 5,2003
sinx = –0,8833
cosx = 0,4688Ufff... zdaje się, szafa gra